Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Mol Sci ; 24(9)2023 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-37176148

RESUMO

Changes in the DNA damage response (DDR) and cellular metabolism are two important factors that allow cancer cells to proliferate. DDR is a set of events in which DNA damage is recognized, DNA repair factors are recruited to the site of damage, the lesion is repaired, and cellular responses associated with the damage are processed. In cancer, DDR is commonly dysregulated, and the enzymes associated with DDR are prone to changes in ubiquitination. Additionally, cellular metabolism, especially glycolysis, is upregulated in cancer cells, and enzymes in this metabolic pathway are modulated by ubiquitination. The ubiquitin-proteasome system (UPS), particularly E3 ligases, act as a bridge between cellular metabolism and DDR since they regulate the enzymes associated with the two processes. Hence, the E3 ligases with high substrate specificity are considered potential therapeutic targets for treating cancer. A number of small molecule inhibitors designed to target different components of the UPS have been developed, and several have been tested in clinical trials for human use. In this review, we discuss the role of ubiquitination on overall cellular metabolism and DDR and confirm the link between them through the E3 ligases NEDD4, APC/CCDH1, FBXW7, and Pellino1. In addition, we present an overview of the clinically important small molecule inhibitors and implications for their practical use.


Assuntos
Neoplasias , Humanos , Ubiquitinação , Neoplasias/patologia , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismo , Dano ao DNA , Ubiquitina/metabolismo , Reparo do DNA
2.
Science ; 376(6592): eabk0639, 2022 04 29.
Artigo em Inglês | MEDLINE | ID: mdl-35482869

RESUMO

Behavioral genetics in dogs has focused on modern breeds, which are isolated subgroups with distinctive physical and, purportedly, behavioral characteristics. We interrogated breed stereotypes by surveying owners of 18,385 purebred and mixed-breed dogs and genotyping 2155 dogs. Most behavioral traits are heritable [heritability (h2) > 25%], and admixture patterns in mixed-breed dogs reveal breed propensities. Breed explains just 9% of behavioral variation in individuals. Genome-wide association analyses identify 11 loci that are significantly associated with behavior, and characteristic breed behaviors exhibit genetic complexity. Behavioral loci are not unusually differentiated in breeds, but breed propensities align, albeit weakly, with ancestral function. We propose that behaviors perceived as characteristic of modern breeds derive from thousands of years of polygenic adaptation that predates breed formation, with modern breeds distinguished primarily by aesthetic traits.


Assuntos
Estudo de Associação Genômica Ampla , Genômica , Animais , Cruzamento , Cães , Fenótipo
3.
Commun Biol ; 5(1): 140, 2022 02 17.
Artigo em Inglês | MEDLINE | ID: mdl-35177770

RESUMO

The Weddell seal (Leptonychotes weddellii) thrives in its extreme Antarctic environment. We generated the Weddell seal genome assembly and a high-quality annotation to investigate genome-wide evolutionary pressures that underlie its phenotype and to study genes implicated in hypoxia tolerance and a lipid-based metabolism. Genome-wide analyses included gene family expansion/contraction, positive selection, and diverged sequence (acceleration) compared to other placental mammals, identifying selection in coding and non-coding sequence in five pathways that may shape cardiovascular phenotype. Lipid metabolism as well as hypoxia genes contained more accelerated regions in the Weddell seal compared to genomic background. Top-significant genes were SUMO2 and EP300; both regulate hypoxia inducible factor signaling. Liver expression of four genes with the strongest acceleration signals differ between Weddell seals and a terrestrial mammal, sheep. We also report a high-density lipoprotein-like particle in Weddell seal serum not present in other mammals, including the shallow-diving harbor seal.


Assuntos
Estudo de Associação Genômica Ampla , Genoma , Focas Verdadeiras/genética , Animais , Regiões Antárticas , Regulação da Expressão Gênica/fisiologia , Metabolismo dos Lipídeos , Oxigênio/metabolismo , Filogenia , Especificidade da Espécie
4.
Genes (Basel) ; 12(12)2021 12 09.
Artigo em Inglês | MEDLINE | ID: mdl-34946912

RESUMO

Dogs represent a unique spontaneous cancer model. Osteosarcoma (OSA) is the most common primary bone tumor in dogs (OMIA 001441-9615), and strongly resembles human forms of OSA. Several large- to giant-sized dog breeds, including the Leonberger, have a greatly increased risk of developing OSA. We performed genome-wide association analysis with high-density imputed SNP genotype data from 273 Leonberger cases with a median age of 8.1 [3.1-13.5] years and 365 controls older than eight years. This analysis revealed significant associations at the CDKN2A/B gene locus on canine chromosome 11, mirroring previous findings in other dog breeds, such as the greyhound, that also show an elevated risk for OSA. Heritability (h2SNP) was determined to be 20.6% (SE = 0.08; p-value = 5.7 × 10-4) based on a breed prevalence of 20%. The 2563 SNPs across the genome accounted for nearly all the h2SNP of OSA, with 2183 SNPs of small effect, 316 SNPs of moderate effect, and 64 SNPs of large effect. As with many other cancers it is likely that regulatory, non-coding variants underlie the increased risk for cancer development. Our findings confirm a complex genetic basis of OSA, moderate heritability, and the crucial role of the CDKN2A/B locus leading to strong cancer predisposition in dogs. It will ultimately be interesting to study and compare the known genetic loci associated with canine OSA in human OSA.


Assuntos
Neoplasias Ósseas/patologia , Inibidor de Quinase Dependente de Ciclina p15/genética , Inibidor p16 de Quinase Dependente de Ciclina/genética , Doenças do Cão/patologia , Loci Gênicos , Osteossarcoma/patologia , Polimorfismo de Nucleotídeo Único , Animais , Neoplasias Ósseas/genética , Doenças do Cão/genética , Cães , Predisposição Genética para Doença , Genoma , Estudo de Associação Genômica Ampla , Osteossarcoma/genética
5.
Nat Genet ; 53(7): 942-948, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-34183854

RESUMO

The UK Biobank Exome Sequencing Consortium (UKB-ESC) is a private-public partnership between the UK Biobank (UKB) and eight biopharmaceutical companies that will complete the sequencing of exomes for all ~500,000 UKB participants. Here, we describe the early results from ~200,000 UKB participants and the features of this project that enabled its success. The biopharmaceutical industry has increasingly used human genetics to improve success in drug discovery. Recognizing the need for large-scale human genetics data, as well as the unique value of the data access and contribution terms of the UKB, the UKB-ESC was formed. As a result, exome data from 200,643 UKB enrollees are now available. These data include ~10 million exonic variants-a rich resource of rare coding variation that is particularly valuable for drug discovery. The UKB-ESC precompetitive collaboration has further strengthened academic and industry ties and has provided teams with an opportunity to interact with and learn from the wider research community.


Assuntos
Bancos de Espécimes Biológicos , Descoberta de Drogas , Sequenciamento do Exoma , Genética Humana , Pesquisa , Descoberta de Drogas/métodos , Genômica/métodos , Humanos , Reino Unido
6.
Cancers (Basel) ; 11(12)2019 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-31842489

RESUMO

Breast cancer is one of the most frequently diagnosed cancers in both women and female dogs. Genome-wide association studies in human breast cancer (HBC) have identified hundreds of genetic variations and somatic driver mutations. However, only a handful of variants have been studied for rare HBC and their associations remain inconclusive. Spontaneous canine mammary tumor (CMT) is a great model for HBC, with clinical similarity. We thus performed whole-exome sequencing in 20 pairs of CMT and normal tissues in dogs. We newly found that PIK3CA was the most frequently mutated gene in CMT (45%). Furthermore, canine PIK3CA A3140G (H1047R), at what is known as the mutational hotspot of HBC, is also a hotspot in CMT. Targeted sequencing confirmed that 29% of CMTs had the same PIK3CA A3140G mutation. Integration of the transcriptome suggests that the PIK3CA (H1047R) induced cell metabolism and cell cycle via an increase of PCK2 and a decrease of CDKN1B but had no effect on cell apoptosis. We identified additional significantly mutated genes, including SCRN1 and CLHC1, which have not been reported in HBC. Our study recapitulated some known HBC-associated genes and human cancer signatures in CMT, and identified novel genes that may be relevant to HBC. This study may allow us to better understand both HBC and CMT and lend new insights into the development of biomarkers.

7.
Psychiatry Investig ; 14(6): 830-838, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-29209388

RESUMO

OBJECTIVE: Restless legs syndrome (RLS) is a highly heritable and common neurological sensorimotor disease disturbing sleep. The objective of study was to investigate significant gene for RLS by performing GWA and replication study in a Korean population. METHODS: We performed a GWA study for RLS symptom group (n=325) and non-RLS group (n=2,603) from the Korea Genome Epidemiology Study. We subsequently performed a replication study in RLS and normal controls (227 RLS and 229 controls) to confirm the present GWA study findings as well as previous GWA study results. RESULTS: In the initial GWA study of RLS, we observed an association of rs11645604 (OR=1.531, p=1.18×10-6) in MPHOSPH6 on chromosome 16q23.3, rs1918752 (OR=0.6582, p=1.93×10-6) and rs9390170 (OR=0.6778, p=7.67×10-6) in UTRN on chromosome 6q24. From the replication samples, we found rs9390170 in UTRN (p=0.036) and rs3923809 and rs9296249 in BTBD9 (p=0.045, p=0.046, respectively) were significantly associated with RLS. Moreover, we found the haplotype polymorphisms of rs9357271, rs3923809, and rs9296249 (overall p=5.69×10-18) in BTBD9 was associated with RLS. CONCLUSION: From our sequential GWA and replication study, we could hypothesize rs9390170 polymorphism in UTRN is a novel genetic marker for susceptibility to RLS. Regarding with utrophin, which is encoded by UTRN, is preferentially expressed in the neuromuscular synapse and myotendinous junctions, we speculate that utrophin is involved in RLS, particularly related to the neuromuscular aspects.

8.
Nat Commun ; 8(1): 774, 2017 10 17.
Artigo em Inglês | MEDLINE | ID: mdl-29042551

RESUMO

Obsessive-compulsive disorder is a severe psychiatric disorder linked to abnormalities in glutamate signaling and the cortico-striatal circuit. We sequenced coding and regulatory elements for 608 genes potentially involved in obsessive-compulsive disorder in human, dog, and mouse. Using a new method that prioritizes likely functional variants, we compared 592 cases to 560 controls and found four strongly associated genes, validated in a larger cohort. NRXN1 and HTR2A are enriched for coding variants altering postsynaptic protein-binding domains. CTTNBP2 (synapse maintenance) and REEP3 (vesicle trafficking) are enriched for regulatory variants, of which at least six (35%) alter transcription factor-DNA binding in neuroblastoma cells. NRXN1 achieves genome-wide significance (p = 6.37 × 10-11) when we include 33,370 population-matched controls. Our findings suggest synaptic adhesion as a key component in compulsive behaviors, and show that targeted sequencing plus functional annotation can identify potentially causative variants, even when genomic data are limited.Obsessive-compulsive disorder (OCD) is a neuropsychiatric disorder with symptoms including intrusive thoughts and time-consuming repetitive behaviors. Here Noh and colleagues identify genes enriched for functional variants associated with increased risk of OCD.


Assuntos
Transtorno Obsessivo-Compulsivo/genética , Proteínas/genética , Proteínas de Ligação ao Cálcio , Proteínas de Transporte/genética , Proteínas de Transporte/metabolismo , Moléculas de Adesão Celular Neuronais/genética , Moléculas de Adesão Celular Neuronais/metabolismo , Estudos de Coortes , Humanos , Proteínas de Membrana Transportadoras/genética , Proteínas de Membrana Transportadoras/metabolismo , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Moléculas de Adesão de Célula Nervosa , Transtorno Obsessivo-Compulsivo/metabolismo , Polimorfismo de Nucleotídeo Único , Proteínas/metabolismo , Transdução de Sinais , Sinapses/genética , Sinapses/metabolismo
9.
PLoS Genet ; 11(2): e1004922, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25642983

RESUMO

Dogs, with their breed-determined limited genetic background, are great models of human disease including cancer. Canine B-cell lymphoma and hemangiosarcoma are both malignancies of the hematologic system that are clinically and histologically similar to human B-cell non-Hodgkin lymphoma and angiosarcoma, respectively. Golden retrievers in the US show significantly elevated lifetime risk for both B-cell lymphoma (6%) and hemangiosarcoma (20%). We conducted genome-wide association studies for hemangiosarcoma and B-cell lymphoma, identifying two shared predisposing loci. The two associated loci are located on chromosome 5, and together contribute ~20% of the risk of developing these cancers. Genome-wide p-values for the top SNP of each locus are 4.6×10-7 and 2.7×10-6, respectively. Whole genome resequencing of nine cases and controls followed by genotyping and detailed analysis identified three shared and one B-cell lymphoma specific risk haplotypes within the two loci, but no coding changes were associated with the risk haplotypes. Gene expression analysis of B-cell lymphoma tumors revealed that carrying the risk haplotypes at the first locus is associated with down-regulation of several nearby genes including the proximal gene TRPC6, a transient receptor Ca2+-channel involved in T-cell activation, among other functions. The shared risk haplotype in the second locus overlaps the vesicle transport and release gene STX8. Carrying the shared risk haplotype is associated with gene expression changes of 100 genes enriched for pathways involved in immune cell activation. Thus, the predisposing germ-line mutations in B-cell lymphoma and hemangiosarcoma appear to be regulatory, and affect pathways involved in T-cell mediated immune response in the tumor. This suggests that the interaction between the immune system and malignant cells plays a common role in the tumorigenesis of these relatively different cancers.


Assuntos
Carcinogênese/genética , Predisposição Genética para Doença , Estudo de Associação Genômica Ampla , Hemangiossarcoma/genética , Linfoma de Células B/genética , Animais , Linfócitos B/patologia , Cruzamento , Carcinogênese/imunologia , Cães , Genótipo , Mutação em Linhagem Germinativa , Haplótipos/genética , Hemangiossarcoma/imunologia , Hemangiossarcoma/patologia , Hemangiossarcoma/veterinária , Humanos , Linfoma de Células B/imunologia , Linfoma de Células B/patologia , Linfoma de Células B/veterinária , Polimorfismo de Nucleotídeo Único , Fatores de Risco
10.
Nature ; 513(7518): 375-381, 2014 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-25186727

RESUMO

Cichlid fishes are famous for large, diverse and replicated adaptive radiations in the Great Lakes of East Africa. To understand the molecular mechanisms underlying cichlid phenotypic diversity, we sequenced the genomes and transcriptomes of five lineages of African cichlids: the Nile tilapia (Oreochromis niloticus), an ancestral lineage with low diversity; and four members of the East African lineage: Neolamprologus brichardi/pulcher (older radiation, Lake Tanganyika), Metriaclima zebra (recent radiation, Lake Malawi), Pundamilia nyererei (very recent radiation, Lake Victoria), and Astatotilapia burtoni (riverine species around Lake Tanganyika). We found an excess of gene duplications in the East African lineage compared to tilapia and other teleosts, an abundance of non-coding element divergence, accelerated coding sequence evolution, expression divergence associated with transposable element insertions, and regulation by novel microRNAs. In addition, we analysed sequence data from sixty individuals representing six closely related species from Lake Victoria, and show genome-wide diversifying selection on coding and regulatory variants, some of which were recruited from ancient polymorphisms. We conclude that a number of molecular mechanisms shaped East African cichlid genomes, and that amassing of standing variation during periods of relaxed purifying selection may have been important in facilitating subsequent evolutionary diversification.


Assuntos
Ciclídeos/classificação , Ciclídeos/genética , Evolução Molecular , Especiação Genética , Genoma/genética , África Oriental , Animais , Elementos de DNA Transponíveis/genética , Duplicação Gênica/genética , Regulação da Expressão Gênica/genética , Genômica , Lagos , MicroRNAs/genética , Filogenia , Polimorfismo Genético/genética
11.
Genome Biol ; 15(3): R25, 2014 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-24995881

RESUMO

BACKGROUND: Obsessive-compulsive disorder (OCD), a severe mental disease manifested in time-consuming repetition of behaviors, affects 1 to 3% of the human population. While highly heritable, complex genetics has hampered attempts to elucidate OCD etiology. Dogs suffer from naturally occurring compulsive disorders that closely model human OCD, manifested as an excessive repetition of normal canine behaviors that only partially responds to drug therapy. The limited diversity within dog breeds makes identifying underlying genetic factors easier. RESULTS: We use genome-wide association of 87 Doberman Pinscher cases and 63 controls to identify genomic loci associated with OCD and sequence these regions in 8 affected dogs from high-risk breeds and 8 breed-matched controls. We find 119 variants in evolutionarily conserved sites that are specific to dogs with OCD. These case-only variants are significantly more common in high OCD risk breeds compared to breeds with no known psychiatric problems. Four genes, all with synaptic function, have the most case-only variation: neuronal cadherin (CDH2), catenin alpha2 (CTNNA2), ataxin-1 (ATXN1), and plasma glutamate carboxypeptidase (PGCP). In the 2 Mb gene desert between the cadherin genes CDH2 and DSC3, we find two different variants found only in dogs with OCD that disrupt the same highly conserved regulatory element. These variants cause significant changes in gene expression in a human neuroblastoma cell line, likely due to disrupted transcription factor binding. CONCLUSIONS: The limited genetic diversity of dog breeds facilitates identification of genes, functional variants and regulatory pathways underlying complex psychiatric disorders that are mechanistically similar in dogs and humans.


Assuntos
Carboxipeptidases/genética , Cateninas/genética , Desmocolinas/genética , Proteínas do Tecido Nervoso/genética , Proteínas Nucleares/genética , Transtorno Obsessivo-Compulsivo/genética , Sequências Reguladoras de Ácido Nucleico/genética , Animais , Animais Endogâmicos , Ataxina-1 , Ataxinas , Cães , Estudo de Associação Genômica Ampla
12.
PLoS Genet ; 9(6): e1003523, 2013 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-23754953

RESUMO

Autism Spectrum Disorders (ASD) are highly heritable and characterised by impairments in social interaction and communication, and restricted and repetitive behaviours. Considering four sets of de novo copy number variants (CNVs) identified in 181 individuals with autism and exploiting mouse functional genomics and known protein-protein interactions, we identified a large and significantly interconnected interaction network. This network contains 187 genes affected by CNVs drawn from 45% of the patients we considered and 22 genes previously implicated in ASD, of which 192 form a single interconnected cluster. On average, those patients with copy number changed genes from this network possess changes in 3 network genes, suggesting that epistasis mediated through the network is extensive. Correspondingly, genes that are highly connected within the network, and thus whose copy number change is predicted by the network to be more phenotypically consequential, are significantly enriched among patients that possess only a single ASD-associated network copy number changed gene (p = 0.002). Strikingly, deleted or disrupted genes from the network are significantly enriched in GO-annotated positive regulators (2.3-fold enrichment, corrected p = 2×10(-5)), whereas duplicated genes are significantly enriched in GO-annotated negative regulators (2.2-fold enrichment, corrected p = 0.005). The direction of copy change is highly informative in the context of the network, providing the means through which perturbations arising from distinct deletions or duplications can yield a common outcome. These findings reveal an extensive ASD-associated molecular network, whose topology indicates ASD-relevant mutational deleteriousness and that mechanistically details how convergent aetiologies can result extensively from CNVs affecting pathways causally implicated in ASD.


Assuntos
Transtornos Globais do Desenvolvimento Infantil/genética , Dosagem de Genes , Redes Reguladoras de Genes , Mapas de Interação de Proteínas/genética , Animais , Criança , Deleção de Genes , Duplicação Gênica , Predisposição Genética para Doença , Genoma Humano , Humanos , Camundongos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...